Our way of working

RevoData is here to enhance your Data & AI journey, from setting up your data strategy and creating your data platform to training your team.

One team

RevoData and your team are one team. We implement the best suited Data & AI solution, with the goal of training and enabling you to then develop independently. Of course, we remain available in the background but you do not become dependent on us.

Idea
Philosophizing together about what the future might look like.
  • Establishing hypotheses and what you expect to find in the data.
  • Does this data already exist or does it need to be created?
  • Defining actions to be taken based on the insights gained.
  • Establishing value; also called the business case.
Value Assessment Proof of Concept (PoC)
In Production
The underlying infrastructure and operational controls do not need to be built and maintained - we do this for you:
  • Less operational overhead
  • Better scalability
  • Cost Savings
  • Greater flexibility
  • Better security
Managed Databricks Well-architected review Maturity assessment
1. Design
Preparation of a design and detailed plan for implementation of a data initiative.
  • Identifying data sources
  • Defining the data structure
  • Determine how the data will be transformed and stored
  • Work out how data is used within your company
2. Build
Build the data project components planned in the design phase:
  • Use reusable components from RevoData
  • Develop Data Pipelines and AI models for your application
  • Measuring & improving data quality
Proof of Concept (Poc). Databricks Consultancy
3. Test
Ensuring that the data platform operates correctly and meets the requirements established in the design phase.
  • Checking that data is correctly transformed and loaded
  • Testing the applications and tools that have been developed
  • Identify and resolve any issues before the project is rolled out
Proof of Concept (Poc). Databricks Consultancy
4. Deploy
Ensuring that the data platform is ready to use and accessible to your people.
  • Putting the data platform into production and making it available to your employees
  • Providing user documentation
  • Training your people
  • Guiding the change to a data-driven organization
Databricks Consultancy Managed Databricks
5. Review
Assess whether the data platform meets its stated objectives
  • Collecting feedback from users to identify any problems or areas for improvement
  • Make any necessary adjustments to the data platform
  • Establish follow-up steps to maximize value
Well-architected review Maturity assessment